A novel role for p75NTR in subplate growth cone complexity and visual thalamocortical innervation.

نویسندگان

  • Patrick S McQuillen
  • Michael F DeFreitas
  • Gabriel Zada
  • Carla J Shatz
چکیده

In cortical development, subplate axons pioneer the pathway from neocortex to the internal capsule, leading to the proposal that they are required for subsequent area-specific innervation of cortex by thalamic axons. A role for p75 neutrophin receptor (NTR) in area-specific thalamic innervation of cortex is suggested by the observation that p75NTR expression is restricted to subplate neurons in a low-rostral to high-caudal gradient throughout the period of thalamocortical innervation. In vitro, neurotrophin 3 binding to p75NTR increases neurite length and filopodial formation of immunopurified subplate neurons, suggesting a role for p75NTR in subplate growth cone morphology and function in vivo. Consistent with this idea, subplate growth cones have markedly fewer filopodia in mice lacking p75NTR than in wild type mice. Despite this gross morphologic defect, many subplate axons in knock-out mice pioneer the projection to the internal capsule as they do in wild-type mice. However a few subplate axons in the knock-out mice make ectopic projections rostral in the intermediate zone and frontal cortex. Concomitant with the altered morphology of subplate growth cones, mice lacking p75NTR have diminished innervation of visual cortex from the lateral geniculate nucleus, with markedly reduced or absent connections in 48% of knock-out mice. Thalamic projections to auditory and somatosensory cortex are normal, consistent with the gradient of p75NTR expression. Our present results are unusual in that they argue that p75NTR functions in a novel way in subplate neurons, that is, in growth cone morphology and function rather than in axon extension or neuronal survival.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel p75NTR signaling pathway promotes survival, not death, of immunopurified neocortical subplate neurons.

Subplate neurons of mammalian neocortex undergo pronounced cell death postnatally, long after they have matured and become incorporated into functional cortical circuits. They express the p75 neurotrophin receptor (p75NTR), which is known to signal cell death in some types of neurons via the activation of sphingomyelinase and the concomitant increase in the sphingolipid ceramide. To evaluate th...

متن کامل

The Nuclear Orphan Receptor COUP-TFI Is Required for Differentiation of Subplate Neurons and Guidance of Thalamocortical Axons

Chicken ovalbumin upstream promotor-transcription factor I (COUP-TFI), an orphan member of the nuclear receptor superfamily, is highly expressed in the developing nervous systems. In the cerebral cortex of Coup-tfl mutants, cortical layer IV was absent due to excessive cell death, a consequence of the failure of thalamocortical projections. Moreover, subplate neurons underwent improper differen...

متن کامل

Fibroblast growth factor 8 regulates neocortical guidance of area-specific thalamic innervation.

Thalamic innervation of each neocortical area is vital to cortical function, but the developmental strategies that guide axons to specific areas remain unclear. We took a new approach to determine the contribution of intracortical cues. The cortical patterning molecule fibroblast growth factor 8 (FGF8) was misexpressed in the cortical primordium to rearrange the area map. Thalamic axons faithfu...

متن کامل

The role of L1 in axon pathfinding and fasciculation.

The neural cell adhesion molecule L1 has been found to play important roles in axon growth and fasciculation. Our main objective was to determine the role of L1 during the development of connections between thalamus and cortex. We find that thalamocortical and corticothalamic axons in mice lacking L1 are hyperfasciculated, a subset of thalamocortical axons make pathfinding errors and thalamocor...

متن کامل

Subplate neurons: a missing link among neurotrophins, activity, and ocular dominance plasticity?

T subplate is a transient structure comprised of a subset of the earliest neurons produced in the cerebral cortex (1). Although it has now been almost 30 years since the subplate was first described (2), a definitive function for the subplate remains unproven. In general, the subplate is believed to be important for the formation of connections between thalamus and cortex. Subplate neurons have...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 9  شماره 

صفحات  -

تاریخ انتشار 2002